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Laser propagation in cylindrical waveguides
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Laser propagation in cylindrical waveguides is studied theoretically, assuming that the guide medium and the
internal medium have permittivities and identical permeabilities that are uniform in space and time and
independent of the fields. Approximate solutions to the cylindrical dispersion relation are found and compared
with numerical solutions. For high refractive indices and small radii the modes are transverse electric and
transverse magnetic, as in the loss-less case. As the refractive index is lowered or the radius increased the
lower-order modes become hybrid electric and hybrid magnetic, and the lower-order transverse magnetic
modes are modified. The higher-order modes, in any waveguide, are always transverse. The transition to hybrid
modes is marked by the disappearance of the fundamental electric mode and the appearance of an additional
magnetic mode. This mode and the losses of the magnetic modes adjacent to it are only adequately described
by numerical solutions. The losses of the transverse modes are accurately reproduced by a simple model based
on a mean reflectivity.

DOI: 10.1103/PhysReVvE.66.046604 PACS nuniherd2.79.Gn, 52.38:r

[. INTRODUCTION been discussed in many books and articles, e.g., Refs.
[8—11], we will only briefly outline the steps used in deriv-
Propagating a laser pulse in a cylindrical waveguichp-  ing them and we will not explicitly consider the fields.
illary tube) has been proposed as a means of guiding the
ignition pulse to the target in alternative fast ignition Il. FORMULATING THE PROBLEM

schemeg1], as a means of extending the interaction length We consider an infinitely long, cylindrical waveguide
with a gas{2,3] or an under dense plasrid], of particular gh infinitely thick walls and internal radiua. We look for

interest to laser-plasma accelerators, as a means of creatin%ave mode solutions to Maxwell's equations with angular
long scale length plasmia,5] and as a new method of ac- frequencyw, traveling in the axialz) direction with fixed

celerating and focusing electrori$], using the conical . - X .
plasma fgrlont created b)? ablationr[mJ the wgll. A number Of?mmuthal 6) and radialr) profiles. The fields then have the
orm

experimental results on laser propagation in cylindrical
waveguides have been publishgtl4,5,7. The subject of E,BocF(k, r)e M0+ ot=k2), 1)

this paper is the theory of laser propagation in cylindrical

waveguides; we will not consider the plasma creation aspecivhereF is a function that is to be determined for each of the
In a previous pap€8] we showed how the essential featuresfield componentsk, is the wave number perpendicular to
of wave propagation in hollow waveguides can be derivedhe axis, which is to be determined, the azimuthal mode
from the basic physical model of waves reflecting betweemumber, is an integer 0, andk, is the axial wave number.
the guide walls. We estimated the losses in cylindricalThjs is determined by the wave number wc, wherec is
waveguides in terms of an arbitrary reflectivity, using thethe speed of light in the medium, and the perpendicular wave
loss-less solution to obtain the angle of incidence and polamymber fromk2=k?—k?. As |k|>|k, | is required for a
ization of the incident waves at the wall. The advantage ofy,qde to propagatd, is often referred to as the cutoff wave

this approach is that the reflectivity can be taken from any, mper k) [8,9]. It is useful to introduce a dimensionless
theoretical model or experimental results. It is a generalizagym

tion of the method based on the surface impedance, com-

monly used in microwave applicatiof8]. The disadvantage u=k, a. 2)

is that it is based on the loss-less solutions, and the validity

of this assumption cannot be determined from the modelhe parameters, k,, k, andc are, in general, complex. The
itself. In this paper we consider the case in which the guideémaginary part ofk,, k5, is the loss term. It has two com-
medium and the internal medium can be represented by peponentskyky/K,5, which gives the losses due to dissipation
mittivities and a single permeability that are uniform in spacein the medium, and- uyu,/(k,xa?), which gives the losses
and time and independent of the fields. The solutions oflue to radial divergence. Inside the guide, this gives the
Maxwell's equations in this case are well known, but thelosses to the wall. The equations for the radial dependence of
cylindrical dispersion relation cannot be solved analytically.the field componentsi-(ur/a), are naturally expressed in
Here we will attempt to find approximate solutions, informedterms of the axial fieldg9], since the fields perpendicular to
by numerical solutions. Approximate solutions have beerthe axis can be determined from the axial fields and there
given by other author$10,11, however, as we will see, does not exist a solution without one or other of the axial
these treatments are incomplete and of limited validity. Asfield component$8,9]. The radial dependence of the axial
the equations and their derivations are well known, and havéeld components is given by Bessel's differential equation.
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Inside the guide we assume a superposition of waves redetermines the separation of the components. In writing the
flected from opposite points of the guide wall and take thedispersion relation in this form we have taken care not to
solution in terms of the Bessel functiods. In the guide divide by parameters that may go to zero. The ratio of the
wall we assume that there is only a radially diverging waveamplitudes of the transverse electrid+g) and transverse
and take the solution in terms of Hankel functions of themagnetic Ary) components is given by

second kind, which we will write simply ad,, as we will

not be concerned with the first kind. The valuesuaind the Atre . S Diy

relative amplitudes of the axial field components are then m_'D_TE_'?' (8)
determined from the boundary conditions. The value&,of

and o must be the same inside the guide and in the guidéote that for the amplitude of the magnetic field to have the
wall, sou in the guide wall, which we will denote,, is  same units as that of the electric field it is necessary to divide

determined byu andk inside the guide from the magnetic field by the speed of light in the medium, a
convention we used in our previous pap8f. The ratio of
uz=(v*-1)k%a?+u?, (3)  the amplitudes of the fields in the guide walg) to that

inside the guid€A) is given by
where v=c/c, is the refractive index. We assume that
>1 and that its imaginary componen<0. Before giving Ag  Jn(u)
the results for the general case, we will consider the case in A Hn(ug)
which there are no losses to the wall, as the solution is
known. This corresponds to the linit|—c. The solution For a more detailed derivation and discussion of these results
has two classes of modes, one with no axial electric fieldsee Croset al. [11]. We cannot solve the cylindrical disper-
called transverse electric, and the other with no axial magsion relation[Eq. (4)] analytically, so we look for approxi-
netic field, called transverse magnetic. The transverse ele¢rate solutions and compare them with numerical solutions.
tric modes are labeled’E,,, and haveu=u/,, where
J/(u/,) =0, J indicating the derivative ofl,, andm, the ll. TRANSVERSE SOLUTIONS
radial mode number, is an integerO that denotes the suc-

) . . First we consider under what circumstances we have, ap-
cesive roots of the equation. The transverse magnetic modes . X X
proximate, transverse electric and transverse magnetic
are labeled M,,,, and havau=u,,, whereJ,(u,,)=0. We

will refer to this solution as the loss-less solution, eveandeS’ that is whei$~0 [Eq. (7)], and find approximate

though there may be losses to the internal medium. We de[si_ggjutlor;se,rfgrfg;ensE OmgﬂZSéThreOQ{;tattzrlmsz’g% u’fc:lzl'ienn'
scribed the fields and intensities of these modes in our pre- . % i - q . ﬁph' h d'); d b ’
vious papel 8], and they are considered, from a somewhat” "_3 applies to modes with high radial mode numbaers,
different point of view, by Elliot[9]. For a finite refractive >1; nfuis relatlvely_ insensitive to the valge of The sec-
index, the solutions contain, in general, both axial field com-Ond term,Jn(u), vanishes Whem':ur!m’ which is the case
ponents, and are referred to as hybrid modes. We will confor the loss-less transv;arse magnetic modes. As we will see
sider these to consist of transverse electric and transveré%te.r’ this holds whetw u'|>'|u'g|. The third term,Hy(ug),
magnetic components. The value wis determined by the Yanishes asv|—c, the limit in Wh'ChZWE expect to have
cylindrical dispersion relatiof10,11. As we know that the (ransverse modes. The fourth term; @“/ug, is never close

. . 20127,,2
solution has separate transverse electric and transverse mdg-Z€ro, asug|>[u| [Eq. (3)]. The last term,  »“u/ug,

9

netic modes as limits, we introduce the form goes to zero asl approacheka, in other words close to
cutoff, and is identically zero at cutoff whan=ka.
D2=D1gDty— $?=0, (4) The dispersion relations for the transverse electric and
transverse magnetic modes, E¢S. and (6), can be solved
where approximately as in our previous papé]. We divide by

Jn(u)Hp(ug) and use the approximatiod (ug)/H,(ug)~
o u , —i for [ug|>1. This approximation is far more accurate than
Dre=Ja(W)H(ug) = u—an(u)Hn(ug) S gither the large argument forms Hf, or H,,. It only breaks
down for high values of. We then look for a solution of the
gives the dispersion relation for transverse electric modes, form u=uy+Au, such thatAu|<1, by expanding],(u)
andJ; (u) aboutug to first order inAu using Taylor’s theo-

u rem. Expandingu, to first order in Au gives u,~u
_1 _ 2 ’ g g~ Yg0
Drwm ‘Jn(u)H(ug) v uan(u)Hn(ug) (6) +Au uO/ugOv where
gives the dispersion relation for transverse magnetic modes, ugo=(v?—1)k%a%+uj. (10
and
The obvious values to try fan, are the values af from the
n u2 U2 loss-less solution given in Sec. Il. For the transverse electric
S=-J (WH(uy) \/1— =5\/1-*= (77 modes we obtain a solution withip=u;,,, provided ug
u 9 u? ug <|ugol,
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1 Ug

AUpg~i——— —.
1—n2/u§ ugO

(11)

Comparing Egs(5) and (6) we see thauy=u),,, will also

give an acceptable solution for the transverse magnet

modes providedv?|uy<|ugo|, giving

Aury=~r*Aurg, |v?|ug<|ug. (12)
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mately equal andu [Eg. (15)] is approximately the average
of the transverse electric and transverse magnetic results of
Egs.(11) and(12). For|S?|>1, the amplitude of the trans-
verse electric component vanishes angdtends to the trans-

yerse magnetic result of Eq12). Thus we christen these

modes hybrid magnetic, labeling thedM,,,,, to be consis-
tent with the notation of the transverse modéd,,,,. Cros
et al. [11] discuss these modes, which they call electric hy-

brid modesEH,,,, in some detail, fofS?|<1. They consider

We introduce the notatiofi M, for these modes, to distin- Ay to zeroth order ir§ and Arg/Ary to first order. This is

guish them from the loss-less modes. kgrequal to the
loss-less solutionu,,,,, to give an acceptable solution re-

quires| v2[up>|ugo|. In this case we divide Eq6) by J;(u)
instead ofJ,(u) and obtain

u
Aury=i -2, | v?|uo>{ugo) - (13
v2u

2
0

For intermediate values dfv?|uy/|ug| we cannot find a
solution for the transverse magnetic modes by this metho

so this completes the approximate transverse solutions.

IV. HYBRID SOLUTIONS

We now consider hybrid solutions. These require 0
and [v?ul<|ug|, therefore S~n/u. Again using
HA(ug)/Hnp(ug)~=—1i, we write the dispersion relatiofiq.
(4)] as a quadratic id},(u)/J,(u), which we abbreviate as

2 2
_ u u? n
X2+i(v?+1)—x— u2—2 - —~0.

Ug Ug u

(14

Marcatili and Schmeltzef10] and Croset al. [11] give
hybrid solutions withug=up,_1m, giving X~ —Au—n/u. As
we will see from the solutiony/uy andn/u are of ordeAu,
so every term in Eq(14) is second order and we obtain

v’+1 u n —
AUyy~i—— — ——(1-V1- )

quite a restrictive assumption, as we can see by rewﬁﬁng
using Ugo=~ +/ v?’—1ka [Eq. (10)], which is a good approxi-
mation for the hybrid modes, as

— 1 Ug Ug

S~ E\/V - 1? E (18)
Both |»2—1| and uy/n are greater than unity and, for a
ropagating modey, may have values up tha, therefore

he assumptionS?|<1 breaks down in all waveguides. As
an example, consider an evacuated glass waveguidewwith
=1.5 andka=100, forn=1, S<1 only applies up tam
=4, andn=1 modes up tan=32 could propagate.

The transition of the hybrid magnetic solutipgqg. (15)]
to the transverse magnetic solutideg. (12)] is not a smooth
one because the value af, decreases fronu, 4, in EQ.
(15 to u/,, in Eqg. (12. Furthermore, for|v?|uy>|uy|,
which occurs in all waveguidesy increases ta,, andAu
is given by Eq.(13). We have three different solutions for
three different regimes. Numerical solutions indicate that for
|S| <1 the hybrid solutionsjig=u,_1y, are a good approxi-
mation and that fofS|>1 the transverse solutions are the
best approximation. Fdmw?|uy<|ugg| the transverse modes
have uy=uj,, and for [v%|uy>|ug| they haveu,=uy,n.
However, Egs(12) and(13) are only accurate for small and
large values off ¥?|ug/|ug|, respectively. A difference of
about a factor of 2 betwedw?|u, and|ug| is sufficient for

2 Ug Ug (15 the approximations to give accurate results. For intermediate
values,us is significantly underestimated. Asy is domi-
and nated byu,, it is accurately predicted for all of the modes.
A To reproduce the loss-less results there must also be hy-
“TE L s-iV1-% (16)  brid electric modesHE,, and Eq.(14) certainly has two
Atm solutions. The obvious value of, for these modes is;,,,
.. ~ 27,2
where giving x~—Au(1—n“/ug) and
2
— (Vz_l)ucz) 1 v +1 ug =
= > Auye= [ ——-—V\1-S (19
S 2nug 17 "E 1ozl 2 ugp U
|Au|<1 requireq v?|uy<|ugy|, as we assumed at the outset. with
The parameteB contains the reciprocal of all the essential
“separation” factors inS[Eq. (7)] discussed at the beginning Arwm =
of Sec. Ill, hence the notation. It is the pivotal result of this Are ~-S-IVl=S, (20)

paper, determing the validity of previous hybrid solutions

[10,11 and treatments based on the loss-less solufi®/%.  which satisfy all of the conditions we require for hybrid elec-
For |S?|<1 the amplitudes of the transverse electric andtric modes. Marcatili and Schmeltzgr0] consider the fields
transverse magnetic componertsq. (16)] are approxi- of these modes, which they call electric hybrid moé#4,,,
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for |S?|<1 andug>n. However, as a result of their approxi- " A
mations, they obtained the hybrid magnetic resultd¢s]. S
The hybrid electric solutiodEg. (19)] shows a smooth 125k i
transition to the transverse electric solutidfqg. (11)] as S
increases. Equatiofil9) does not requirdv?|uy<<|ugo| to
ensurgAu|<1, uy<<|ugy| is sufficient. Numerical solutions
indicate that Eq(19) is more accurate than E¢L1) for the

first few modes with|S|>1, and for higher values ofS] ~ E°7[ "
there is no significant difference between the two results. As :
we haveug/|ug|<1//v| for a propagating mode, Eq19) 085k i

only breaks down for low-refractive indices near cutoff,
where it underestimatas; . However, for almost all cases of

interest, the error is not significant. Equati@®) is an ad- ] I

equate approximation for all of the>0 electric modes, with o
one important exception. There are me=1 hybrid electric oo'”’ s : é: 10 :1'2 :1'4 : 1'6: = 120
modes. Form=1, Eq. (19 does not satisfyyAu|<1, be- Re(u)

causeu/,~n, the values getting closer asincreases. Nu-
merical solutions for values of from 1 to 5 confirmed that
there are nan=1 hybrid electric modes. There will only be

m=1 transverse electric modes witi>0 when|§|>l for : : : :
. ) ; . theoretically predicted modes are given by open circles, la-
this mode or when then= 1 hybrid magnetic mode is cutoff. yp g y op

A tioned in Sec. 11 fon=0 th d | beled with the mode name. Th€E ; mode clearly does not
S We mentionéd In Sec. 1l ton= € modes aré purely appear in the numerical solution. The first point is at

?2.389, 0.1740), coinciding almost exactly with the theoret-
ical prediction for theHM ; mode of (2.399, 0.1738). Ne-

glectinggin Eq. (15 would give uyi=2.405, showing that

FIG. 1. Mode structure for th@=1 modes in a cylindrical
waveguide withv=1.5 andka= 20.

that is the mode with the lowest value of, is theHM 4
mode (y~2.405), not theHE;; mode {y~1.841), whose
transverse equivalentE;; is the fundamental mode. The = . . -
disappearance of what should be the fundamental hybrin's solution is an improvement over thg results of .Marcatlll
mode means that we do not have an approximate gener@d Schmeltzer10] and Croset al. [11], if only marginally
solution to Maxwell's equations: we cannot represent an arS°© o this mode. The next point is at (5.155, 0.4184), cor-

bitrary radial profile inside the guide with the hybrid modes "€SPonding to th&iE,, mode (5.208, 0.3906), the approxi-

that actually exist. We only have a complete solution wheriation is not as good this time, the main error being the
them=1 transverse electric modes exist. underestimate aofi;, which is the case for all of the electric

modes. The adjacent point (5.403, 0.3766) is clearly the
HM,, mode (5.441, 0.3895), again the theoretical model
V. NUMERICAL EXAMPLES gives gooq agreemen_t. I\_/Iarc:_:ltili ar_1d Schmeltzer and Cros
et al. give just one point in this region at (5.520, 0.3895).
We will now give an example of the numerical results for For the subsequent modes these models breakdown com-
V:1.5, ka= 20, andn=1. This CorreSpondS to an evacuated p|ete|y Foruo> 6.089 we ha\/é§|>1, and we can C|ear|y
glass waveguide with a rather small radius, but it allows Ussee the separation of the modes into transverse electric and
to demonstrate all of the important transitions in a handful ofransverse magnetic, though we only switch models for the
modes. We chose=1 as this corresponds to typical laser magnetic modes. The theoretical prediction for tH&,;
pulses. For this refractive index we have considered valueg,ode is (8.536, 0.3953), close to that for thi&;; mode
of ka from 1.8 to 100 and values of from O to 5. All of (8536 0.3616), and closer to the numerical result of
these results showed the same features we describe he[g.522, 0.4012). We still label the mode as transverse elec-
Given that the refractive index of dielectrics varies fromtic pecause the transverse magnetic component of the fields
about 1.4 to around 2.[9], these results can be taken asis small. For the subsequent transverse electric mddesg,,
representative of dielectric waveguides. We consider the abI'Els, and TE;s, both equations give essentially the same
solute value oD [Eq. (4)] in the complexu plane (g, Us), results: (11.71, 0.4802), (14.86, 0.5627), and
looking for the position of the minima. These are plotted a518.02, 0.6333), close to the numerical points at
filled circles.in Fig. 1. They_were obtained uging a grid spac-(11.69, 0.5120), (14.84, 0.6277), and (17.99, 0.7391). The
ing of 10 ¥ in up and 10 in u, [12]. The grid lines iUy main error is the underestimate of, which increases with
give the values ofi;,, Uom, andusy,, which appear in that . This is to be expected, as the theory assumes|ug|
order. However, the values of;,, anduoy, are so close for  andug/|uy| increases withi,. However, for the last, propa-
m>2 that only the values ofi;, are actually shown. The gating, transverse electric mo@d,g, Uy/ugo=0.6274 and
solid vertical lines give the positions of the expected transithe result foru, is still within 15% of the numerical value.
tions in the modes,S|=1 and|v?|u,= lugol, which appear The first transverse mode is at (8.290, 0.9664), correspond-
in that order. The dotted curves give the imaginary compoing to the predicted M;; mode (8.536, 0.8136), theM 3
nents of Eqs(13), (15), and(19). The exact positions of the mode would be at (8.538, 0.7802). The theoretical model is
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not accurate here as it assunjes|uy<|ugo| and we have andHM; results. This is thM mode, but the large argu-
1?Ug/ugo=0.8025, but it is more accurate than might be ment approximation is not valid in this case. This is sugges-
expected. For larger values kh the theoretical model did tjye as to what might occur to tHEE;; mode when it ceases
give accurate predictions for the first f€éM, modes. In {0 exist. Consider a waveguide with a slowly increasing ra-
this case there are no furth&Mj,, modes. The value aiz  dius that only allows th@ E;; mode to enter. After a rela-

of the TM/,,, modes and th& E,,,, modes is slightly overes- tively small increase in the radius this mode ceases to exist.
timated. There is a negative, second order, contribution té mode being cutoff or reflected by a slowly increasing ra-
Aug, the leading term of which iﬁu%/uo [8]. The differ-  dius is counter intuitive, it seems likely that it is distorted as
ence is thus greater for tffeM/,, modes and they have lower it propagates, eventually coupling to theM;; mode. More
values ofuy than theTE,, modes. The extension of the generally speaking, it appears likely that the=1 transverse
theory to second order, though possible, is beyond the scogectric components and the lower-order transverse magnetic
of this paper. Fou,>11.09 we havetv2|u0>|ugo|, so we components of an arbitrary electromagnetic wave, propagat-
expect the next transverse magnetic mode to beTthlg,  INg in a waveguide that does not support these modes, will
mode. As expected, thEM,; and TM, modes do not ap- be distorted by the losses, eventually coupling to the hybrid

pear, but there is a point at (10.94, 1.376), almost exactly oH“OdeS- . q . . ¢ flectivi

the transition line, which is not predicted by the theory. It is t(h)utr previous _?0 d ?18] ?_'VeSl:cﬁ In tlerm:_o %re eCt'ng

clearly a magnetic mode, but it does not fit into the predicteq_ . at 1S a speciiied tunction of angie ot Incidence and po-
. . . - larization. Ignoring the complications of obtaining an aver-

series of hybrid and transverse modes, so we christen it thae ed andle of incidence and bpolarization. it ai

M mode. To find an approximate solution for tiv6 mode g 9 P 1t gIVes

. ) —In(R)/4, the angle of incidencep is given by sing
we use the large argument approximation Jpu)/Jy(u) in =ux/ka, the transverse electric modes argolarized and

Eq. (6) as well as foH,(ug)/Hn(ug). Assuming|us|>1we  the transverse magnetic modes pigolarized. The values of
haveJ;(u)/Jq(u)~—i giving »’u=ug. This correctly pre- _ given by this expression, using the full Fresnel equations
dicts the value ofiy, but does not give the value of;. It [8], are shown as dashed lines in Fig. 1, fheolarized

only correctly determines the value of for large, complex reflectivity giving the higher value. The values wf for the
refractive indices. We were unable to obtain a simple, anagransverse modes are accurately reproduced. The values for
lytic result for theM mode with a wider regime of validity. the hybrid modes lie between tiseand p-polarized results.
The points at (13.55,1.208), (16.54,0.9564), andonly the values ofu, for the TM}; and TM;, modes are
(19.64, 0.8140) are clearly th€M,4, TMys, and TMis  glightly overestimated at 1.051 and 1.284, respectively, com-
modes, which, according to Eq13), have u equal t0  nared to the actual values of 0.9664 and 1.208. However, the
(13.32, 0.8683), (16.47, 0.7494), and (19.62, 0.6740). Thigajye ofu, for the M mode, which coincides almost exactly
time the values ofiy are slightly underestimated, the secondyith the peak inu,, is considerably overestimated at 2.590,
order contribution tAAuy, is positive for theTM,, modes,  compared to the actual value of 1.376. This model, though
and the values ofi; are significantly underestimated. The more accurate than that described here for the transverse
approximation improves with increasing, as it assumes modes, still breaks down for the magnetic modes in the vi-

| v#|uo>]ugo|, which is never satisfied: the last, propagating,cinity of v’u=ug, or in terms of the reflectivity near the
transverse magnetic mod&Mys has »*uo/ugo=1.484.  minimum in the p-polarized reflectivity. Including the ,
Clearly the values ofiy for the magnetic modes in the vicin- tgrm [8], which takes account of the varying angle of inci-
ity of [1?|up=|ugo| cannot be obtained from a theory that dence and polarization, gave even better agreement with the

assumesAu|<1. Despite this, the theory correctly predicts transverse electric results and made no significant difference
the rise and fall iru; and the position of the peak value, and to the transverse magnetic results.

is at least within a factor of 1.4 of the numerical values. The Fina”y, we br|ef|y consider a Comp|ex refractive index

value ofuy is accurately predicted for all of the modes. =3.53-4.1i, again forka=20 andn=1. The results are

It is interesting to see how smal has to be in order to  given in Fig. 2, in exactly the same format as the previous
have a TE;; mode. The condition|S>1 requireska  results. This refractive index is the upper limit for aluminum
<0.94, and in this case we do not expect to have any propat a wavelength of Jum that we considered in our previous
gating modes. Requiring thdM ,; mode to be cutoff gives paper[8]. We have not extensively investigated complex re-
ka<2.4. Numerical solutions showed obvioudl{£;; modes fractive indices, so we do not know if these results are typi-
up toka=2.5, where we obtained (1.841, 0.8110) comparectal. In this case the refractive index is almost sufficient to
to the theoretical predictiopEq. (11)] of (1.841, 0.7803). obtain the loss-less mode structure. There areTid;,,
For this case the hybrid electric res{iEq. (19)] is clearly modes and only one hybrid mode, th&M,; mode. This
not a better approximation. For th&M ; mode to exist we mode occurs nedn/2|u0=|ugo|, and we see the breakdown
require|v?|uy<|ugol, giving ka>4.34. Numerical solutions of the hybrid magnetic solution. The theoretical prediction
only clearly corresponded to theM,; mode atka=11, for the HM; mode is (2.676, 0.3381), and the numerical
where we obtained (2.351, 0.3120) compared to the theoretesult is (2.687, 0.4371). The value wf; is accurately pre-
ical prediction of (2.387, 0.3118). For intermediate values ofdicted, butu; is significantly underestimated. The next point
ka there still existed a solution: asa increaseduy and (indicated by an arroyis off the top of the figure at
UgoUy increased steadily, moving between the predidteg,  (2.814, 2.048), this is thkl mode. Using the large argument
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05— 242001 — this time underestimating,. For theHM; mode even the

p-polarized reflectivity gives a value afy lower than the
numerical value 0.3857 compared to 0.4371, forhemode

it is much lower at 0.3933 compared to 2.048, and for the
TMy, mode the result is still somewhat low at 0.3284 com-
pared to 0.3666. This leads to an interesting conclusion: the
p-polarized reflectivity of a curved surface is lower than that
of a plane surface in metals and plasmas and higher in di-
electrics.

From these examples we can conclude that the theoretical
model is adequate for the vast majority of modes, and that it
S is more accurate for larger, complex refractive indices. The
. TE | theory only proves inadequate in calculating the losse¥ (
T h e P for the magnetic modes in the vicinity pf% uy=[ugo|. The
HE L I : examples show an additional magnetic mode Mhmode, in
oz 4 & b M 14 6 this region. Assuming thatis|>1 we obtaineds*u~u, for

this mode, which has been seen to be of limited validity.
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FIG. 2. Mode structure for th@=1 modes in a cylindrical
waveguide withv=3.53-4.1i andka=20.
VI. CONCLUSIONS

soluthn,v U=~Ug, IVES (2'46.5’ 2.'786)' The relatively large We have established two parameters that determine the
error is not surprising, considering that(u)/J,(u) at the

numerically determined point is-0.1202-0.8793, not  M2de structure in cylindrical waveguidd§| [Eq. (17)] and

—i as is assumed. The next point is at (5.274, 0.04720) a|%2|“0/|“90|' The value of these parameters increases with
= . . . ’ " “the refractive index and the mode order, and exceeds 1 in all
|S|>1 we identify this as thel E;, mode, but we use the

HE, prediction[Eq. (19)] of (5.273, 0.04835), which gives waveguides, at least for the h|gher-or(jer modes'.|5b(1
much better agreement than th&,, prediction[Eq. (11)] of we have hybrid electridiEqrm, and hybrid magnetic modes,
(5.292, 0.03263). Equatiofl9) also gives marginally better HMnm. For|S|>1 we have transverse electritk,y, and
agreement for th& E;5 mode. For the subsequent transverselfansverse magnetic modesM,n, as in the loss-less case.
electric modes Eqs11) and (19) give almost identical re- Forn=0, |S| goes to infinity and the modes are identically
sults, but Eq(11) did give marginally better agreement this transverse. For| v2|u0/|ugo|<1 the transverse magnetic
time. For this higher-refractive index the approximatiaps modes have significantly lower valueswf than in the loss-
<|ugol and|»?|ug>|uge| are more accurate and the theoret-less case, equal to those of the corresponding transverse elec-
ical results are in good agreement with almost all of thetric modes. We introduced the notatidM),, to distinguish
numerical results. Only thE€M, prediction is slightly out at  these modes. Fdru2|u0/|ugo|>1 the mode structure is the
(6.620, 0.3505) compared to the numerical result ofsame as in the loss-less case. The three different regimes of
(6.578, 0.3666). The value ¢f2|ug/|ugl for this mode is  the magnetic modes required three different, approximate,
only 1.489, so the agreement is better than would be exsolutions[Egs.(12), (13), and(15)]. None of these solutions
pected. It is interesting to note that the valuesugffor this  are accurate in the vicinity dfv?|uy/|ug|=1, where they
mode and for thed M ; mode are accurately determined by underestimate the losses. Numerical solutions showed an ad-
using the predicted value afy in place ofug to calculate  ditional magnetic mode near this transition, which we called
us. This clearly indicates that a second-order treatmenthe M mode. We obtained an approximate solution for this
would accurately predict the results, but it is not sufficient tomode,v2u~ug, assumingu,|>1, which is of limited va-
indicate if substitutinguy for ug would, in general, give lidity. We obtained approximate solutions for the transverse
better predictions fou,. The values ofuy are more accu- electric[Eq. (11)] and hybrid electric modelEgs. (19) and
rately predicted than in dielectrics as there is now a first{20)], which have been found to be adequate for all cases of
order contribution taAug. interest. For then>0 electric modes the hybrid solution ac-
We also examined this case using the reflectivity modelcurately describes all except tihe=1 modes. There are no
This time it was necessary to include thg term to give ~m=1 hybrid electric modes. The transverse solution is re-
accurate results for the transverse electric modes. The resulysired to describe then=1 transverse electric modes and
are very close to the numerical results for the transverséhen=0 modes. The changes to the loss-less mode structure
modes and very similar to those of the current model, howmean that we do not have a complete set of orthogonal
ever, in this case they are not more accurate. In the context efiodes, and hence that we do not have a general solution to
the reflectivity model, the fact that the hybrid solutigeg.  Maxwell's equations.
(19)] gives better agreement with the numerical results than This work forms a bridge between previous hybrid solu-
the transverse solutidieq. (11)] is due to the inherent mixed tions [10,11 and loss calculations based on the loss-less
polarization of then>0 transverse electric modes. The re- modes[8,9], which are seen to be different limits of the
flectivity model again fails in the vicinity ofv?|uy=|ug|, ~ problem.
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Finally, we consider the implications for our previous >n the large argument approximation for the Bessel func-
model [8]. It is valid for modes with|v?|ug>|ug|, or in  tions is valid and in this limit the fields at the wall have the
terms of the reflectivity, when thg-polarized reflectivity in- same form as a plane wave. The validity of the model for
creases with increasing incidence angle. However, takingigh-refractive indices can be explained by the negligible
into account the change in, of the transverse magnetic penetration of the fields in the guide widl]. We have seen
modes wher»?|ug<|ug|, it can be applied tm=0 modes  that it is more accurate for the transverse modes in dielectrics
andn>0 modes withS|>1, which are less restrictive con- than the model given here and that it gives similar results for
ditions. However, it is not valid for transverse magneticMmetals and plasmas. This indicates that it could be applied to
modes neafV2|Uo=|Ugo|, that is, near the minimum in the Plasma waveguides _vv_her_e the assumptions used he_re do not
p-polarized reflectivity. This can be associated to significan@PPly, but the reflectivity is known from other theoretical or
changes in thex-polarized reflectivity for curved surfaces; €xperimental results.
the model treats the guide wall, point by point, as a plane
surface. The validity of the model for=0 and|u|>n can ACKNOWLEDGMENT
be explained by the fact that in these cases the guide wall can
be treated as a plane surface. et 0 this is because the J.R.D. was supported by a grant from the Fu@dguara a
fields are identical at every point around the wall. Fof  Ciéncia e a Tecnologia.
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