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Laser propagation in cylindrical waveguides

J. R. Davies and J. T. Mendonc¸a
GoLP, Instituto Superior Te´cnico, 1049-001 Lisboa, Portugal

~Received 21 May 2002; published 9 October 2002!

Laser propagation in cylindrical waveguides is studied theoretically, assuming that the guide medium and the
internal medium have permittivities and identical permeabilities that are uniform in space and time and
independent of the fields. Approximate solutions to the cylindrical dispersion relation are found and compared
with numerical solutions. For high refractive indices and small radii the modes are transverse electric and
transverse magnetic, as in the loss-less case. As the refractive index is lowered or the radius increased the
lower-order modes become hybrid electric and hybrid magnetic, and the lower-order transverse magnetic
modes are modified. The higher-order modes, in any waveguide, are always transverse. The transition to hybrid
modes is marked by the disappearance of the fundamental electric mode and the appearance of an additional
magnetic mode. This mode and the losses of the magnetic modes adjacent to it are only adequately described
by numerical solutions. The losses of the transverse modes are accurately reproduced by a simple model based
on a mean reflectivity.
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I. INTRODUCTION

Propagating a laser pulse in a cylindrical waveguide~cap-
illary tube! has been proposed as a means of guiding
ignition pulse to the target in alternative fast ignitio
schemes@1#, as a means of extending the interaction len
with a gas@2,3# or an under dense plasma@4#, of particular
interest to laser-plasma accelerators, as a means of crea
long scale length plasma@4,5# and as a new method of ac
celerating and focusing electrons@6#, using the conical
plasma front created by ablation of the wall. A number
experimental results on laser propagation in cylindri
waveguides have been published@1,4,5,7#. The subject of
this paper is the theory of laser propagation in cylindri
waveguides; we will not consider the plasma creation asp
In a previous paper@8# we showed how the essential featur
of wave propagation in hollow waveguides can be deriv
from the basic physical model of waves reflecting betwe
the guide walls. We estimated the losses in cylindri
waveguides in terms of an arbitrary reflectivity, using t
loss-less solution to obtain the angle of incidence and po
ization of the incident waves at the wall. The advantage
this approach is that the reflectivity can be taken from a
theoretical model or experimental results. It is a general
tion of the method based on the surface impedance, c
monly used in microwave applications@9#. The disadvantage
is that it is based on the loss-less solutions, and the vali
of this assumption cannot be determined from the mo
itself. In this paper we consider the case in which the gu
medium and the internal medium can be represented by
mittivities and a single permeability that are uniform in spa
and time and independent of the fields. The solutions
Maxwell’s equations in this case are well known, but t
cylindrical dispersion relation cannot be solved analytica
Here we will attempt to find approximate solutions, inform
by numerical solutions. Approximate solutions have be
given by other authors@10,11#, however, as we will see
these treatments are incomplete and of limited validity.
the equations and their derivations are well known, and h
1063-651X/2002/66~4!/046604~7!/$20.00 66 0466
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been discussed in many books and articles, e.g., R
@8–11#, we will only briefly outline the steps used in deriv
ing them and we will not explicitly consider the fields.

II. FORMULATING THE PROBLEM

We consider an infinitely long, cylindrical waveguid
with infinitely thick walls and internal radiusa. We look for
wave mode solutions to Maxwell’s equations with angu
frequencyv, traveling in the axial~z! direction with fixed
azimuthal (u) and radial~r! profiles. The fields then have th
form

E,B}F~k'r !ei (nu1vt2kzz), ~1!

whereF is a function that is to be determined for each of t
field components,k' is the wave number perpendicular
the axis, which is to be determined,n, the azimuthal mode
number, is an integer>0, andkz is the axial wave number
This is determined by the wave numberk5vc, wherec is
the speed of light in the medium, and the perpendicular w
number fromkz

25k22k'
2 . As uku.uk'u is required for a

mode to propagate,k' is often referred to as the cutoff wav
number (kc) @8,9#. It is useful to introduce a dimensionles
form

u5k'a. ~2!

The parametersu, kz , k, andc are, in general, complex. Th
imaginary part ofkz , kzI , is the loss term. It has two com
ponents;kRkI /kzR , which gives the losses due to dissipatio
in the medium, and2uRuI /(kzRa2), which gives the losses
due to radial divergence. Inside the guide, this gives
losses to the wall. The equations for the radial dependenc
the field components,F(ur/a), are naturally expressed i
terms of the axial fields@9#, since the fields perpendicular t
the axis can be determined from the axial fields and th
does not exist a solution without one or other of the ax
field components@8,9#. The radial dependence of the axi
field components is given by Bessel’s differential equatio
©2002 The American Physical Society04-1
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Inside the guide we assume a superposition of waves
flected from opposite points of the guide wall and take
solution in terms of the Bessel functionsJn . In the guide
wall we assume that there is only a radially diverging wa
and take the solution in terms of Hankel functions of t
second kind, which we will write simply asHn , as we will
not be concerned with the first kind. The values ofu and the
relative amplitudes of the axial field components are th
determined from the boundary conditions. The values ofkz
and v must be the same inside the guide and in the gu
wall, so u in the guide wall, which we will denoteug , is
determined byu andk inside the guide from

ug
25~n221!k2a21u2, ~3!

wheren5c/cg is the refractive index. We assume thatunu
.1 and that its imaginary componentnI<0. Before giving
the results for the general case, we will consider the cas
which there are no losses to the wall, as the solution
known. This corresponds to the limitunu→`. The solution
has two classes of modes, one with no axial electric fie
called transverse electric, and the other with no axial m
netic field, called transverse magnetic. The transverse e
tric modes are labeledTEnm and haveu5unm8 , where
Jn8(unm8 )50, Jn8 indicating the derivative ofJn , andm, the
radial mode number, is an integer.0 that denotes the suc
cesive roots of the equation. The transverse magnetic m
are labeledTMnm and haveu5unm , whereJn(unm)50. We
will refer to this solution as the loss-less solution, ev
though there may be losses to the internal medium. We
scribed the fields and intensities of these modes in our
vious paper@8#, and they are considered, from a somew
different point of view, by Elliot@9#. For a finite refractive
index, the solutions contain, in general, both axial field co
ponents, and are referred to as hybrid modes. We will c
sider these to consist of transverse electric and transv
magnetic components. The value ofu is determined by the
cylindrical dispersion relation@10,11#. As we know that the
solution has separate transverse electric and transverse
netic modes as limits, we introduce the form

D25DTEDTM2S250, ~4!

where

DTE5Jn8~u!H~ug!2
u

ug
Jn~u!Hn8~ug! ~5!

gives the dispersion relation for transverse electric mode

DTM5Jn8~u!H~ug!2n2
u

ug
Jn~u!Hn8~ug! ~6!

gives the dispersion relation for transverse magnetic mo
and

S5
n

u
Jn~u!Hn~ug!A12

u2

ug
2A12n2

u2

ug
2

~7!
04660
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determines the separation of the components. In writing
dispersion relation in this form we have taken care not
divide by parameters that may go to zero. The ratio of
amplitudes of the transverse electric (ATE) and transverse
magnetic (ATM) components is given by

ATE

ATM
5 i

S

DTE
5 i

DTM

S
. ~8!

Note that for the amplitude of the magnetic field to have
same units as that of the electric field it is necessary to div
the magnetic field by the speed of light in the medium
convention we used in our previous paper@8#. The ratio of
the amplitudes of the fields in the guide wall (Ag) to that
inside the guide~A! is given by

Ag

A
5

Jn~u!

Hn~ug!
. ~9!

For a more detailed derivation and discussion of these res
see Croset al. @11#. We cannot solve the cylindrical dispe
sion relation@Eq. ~4!# analytically, so we look for approxi-
mate solutions and compare them with numerical solutio

III. TRANSVERSE SOLUTIONS

First we consider under what circumstances we have,
proximate, transverse electric and transverse magn
modes, that is whenS'0 @Eq. ~7!#, and find approximate
solutions for these modes. The first term inS, n/u, is iden-
tically zero for n50 and approximately zero foruuu@n,
which applies to modes with high radial mode numbers,m
@1; n/u is relatively insensitive to the value ofn. The sec-
ond term,Jn(u), vanishes whenu5unm , which is the case
for the loss-less transverse magnetic modes. As we will
later, this holds whenun2uu@uugu. The third term,Hn(ug),
vanishes asunu→`, the limit in which we expect to have
transverse modes. The fourth term, 12u2/ug

2 , is never close
to zero, asuugu.uuu @Eq. ~3!#. The last term, 12n2u2/ug

2 ,
goes to zero asu approacheska, in other words close to
cutoff, and is identically zero at cutoff whenu5ka.

The dispersion relations for the transverse electric a
transverse magnetic modes, Eqs.~5! and ~6!, can be solved
approximately as in our previous paper@8#. We divide by
Jn(u)Hn(ug) and use the approximationHn8(ug)/Hn(ug)'
2 i for uugu@1. This approximation is far more accurate th
either the large argument forms ofHn8 or Hn . It only breaks
down for high values ofn. We then look for a solution of the
form u5u01Du, such thatuDuu!1, by expandingJn(u)
andJn8(u) aboutu0 to first order inDu using Taylor’s theo-
rem. Expandingug to first order in Du gives ug'ug0
1Du u0 /ug0, where

ug0
2 5~n221!k2a21u0

2 . ~10!

The obvious values to try foru0 are the values ofu from the
loss-less solution given in Sec. II. For the transverse elec
modes we obtain a solution withu05unm8 provided u0

!uug0u,
4-2
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DuTE' i
1

12n2/u0
2

u0

ug0
. ~11!

Comparing Eqs.~5! and ~6! we see thatu05unm8 will also
give an acceptable solution for the transverse magn
modes providedun2uu0!uug0u, giving

DuTM'n2DuTE , un2uu0!uug0u. ~12!

We introduce the notationTMnm8 for these modes, to distin
guish them from the loss-less modes. Foru0 equal to the
loss-less solution,unm , to give an acceptable solution re
quiresun2uu0@uug0u. In this case we divide Eq.~6! by Jn8(u)
instead ofJn(u) and obtain

DuTM' i
ug0

n2u0

, un2uu0@uug0u. ~13!

For intermediate values ofun2uu0 /uug0u we cannot find a
solution for the transverse magnetic modes by this meth
so this completes the approximate transverse solutions.

IV. HYBRID SOLUTIONS

We now consider hybrid solutions. These requiren.0
and un2uu!uugu, therefore S'n/u. Again using
Hn8(ug)/Hn(ug)'2 i , we write the dispersion relation@Eq.
~4!# as a quadratic inJn8(u)/Jn(u), which we abbreviate asx,

x21 i ~n211!
u

ug
x2n2

u2

ug
2

2
n2

u2
'0. ~14!

Marcatili and Schmeltzer@10# and Croset al. @11# give
hybrid solutions withu05un21m , giving x'2Du2n/u. As
we will see from the solution,u/ug andn/u are of orderDu,
so every term in Eq.~14! is second order and we obtain

DuHM' i
n211

2

u0

ug0
2

n

u0
~12A12S̄2! ~15!

and

ATE

ATM
'2S̄2 iA12S̄2, ~16!

where

S̄5
~n221!u0

2

2nug0
. ~17!

uDuu!1 requiresun2uu0!uug0u, as we assumed at the outs
The parameterS̄ contains the reciprocal of all the essent
‘‘separation’’ factors inS @Eq. ~7!# discussed at the beginnin
of Sec. III, hence the notation. It is the pivotal result of th
paper, determing the validity of previous hybrid solutio
@10,11# and treatments based on the loss-less solutions@8,9#.
For uS̄2u!1 the amplitudes of the transverse electric a
transverse magnetic components@Eq. ~16!# are approxi-
04660
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mately equal andDu @Eq. ~15!# is approximately the averag
of the transverse electric and transverse magnetic resul
Eqs.~11! and ~12!. For uS̄2u@1, the amplitude of the trans
verse electric component vanishes andDu tends to the trans-
verse magnetic result of Eq.~12!. Thus we christen these
modes hybrid magnetic, labeling themHMnm , to be consis-
tent with the notation of the transverse modesTMnm . Cros
et al. @11# discuss these modes, which they call electric h
brid modesEHnm in some detail, foruS̄2u!1. They consider
Du to zeroth order inS̄ andATE /ATM to first order. This is
quite a restrictive assumption, as we can see by rewritingS̄,
usingug0'An221 ka @Eq. ~10!#, which is a good approxi-
mation for the hybrid modes, as

S̄'
1

2
An221

u0

n

u0

ka
. ~18!

Both un221u and u0 /n are greater than unity and, for
propagating mode,u0 may have values up toka, therefore
the assumptionuS̄2u!1 breaks down in all waveguides. A
an example, consider an evacuated glass waveguide win

51.5 andka5100, for n51, S̄,1 only applies up tom
54, andn51 modes up tom532 could propagate.

The transition of the hybrid magnetic solution@Eq. ~15!#
to the transverse magnetic solution@Eq. ~12!# is not a smooth
one because the value ofu0 decreases fromun21m in Eq.
~15! to unm8 in Eq. ~12!. Furthermore, forun2uu0.uug0u,
which occurs in all waveguides,u0 increases tounm andDu
is given by Eq.~13!. We have three different solutions fo
three different regimes. Numerical solutions indicate that
uS̄u,1 the hybrid solutions,u05un21m , are a good approxi-
mation and that foruS̄u.1 the transverse solutions are th
best approximation. Forun2uu0,uug0u the transverse mode
have u05unm8 and for un2uu0.uug0u they haveu05unm .
However, Eqs.~12! and~13! are only accurate for small an
large values ofun2uu0 /uug0u, respectively. A difference of
about a factor of 2 betweenun2uu0 anduug0u is sufficient for
the approximations to give accurate results. For intermed
values,uI is significantly underestimated. AsuR is domi-
nated byu0, it is accurately predicted for all of the modes

To reproduce the loss-less results there must also be
brid electric modesHEnm and Eq.~14! certainly has two
solutions. The obvious value ofu0 for these modes isunm8 ,
giving x'2Du(12n2/u0

2) and

DuHE'
1

12n2/u0
2 S i

n211

2

u0

ug0
2

n

u0

A12S̄2D ~19!

with

ATM

ATE
'2S̄2 iA12S̄2, ~20!

which satisfy all of the conditions we require for hybrid ele
tric modes. Marcatili and Schmeltzer@10# consider the fields
of these modes, which they call electric hybrid modesEHnm
4-3
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for uS̄2u!1 andu0@n. However, as a result of their approx
mations, they obtained the hybrid magnetic result foru @8#.

The hybrid electric solution@Eq. ~19!# shows a smooth
transition to the transverse electric solution@Eq. ~11!# as S̄
increases. Equation~19! does not requireun2uu0!uug0u to
ensureuDuu!1, u0!uug0u is sufficient. Numerical solutions
indicate that Eq.~19! is more accurate than Eq.~11! for the
first few modes withuS̄u.1, and for higher values ofuS̄u
there is no significant difference between the two results.
we haveu0 /uug0u,1/unu for a propagating mode, Eq.~19!
only breaks down for low-refractive indices near cuto
where it underestimatesuI . However, for almost all cases o
interest, the error is not significant. Equation~19! is an ad-
equate approximation for all of then.0 electric modes, with
one important exception. There are nom51 hybrid electric
modes. Form51, Eq. ~19! does not satisfyuDuu!1, be-
causeun18 ;n, the values getting closer asn increases. Nu-
merical solutions for values ofn from 1 to 5 confirmed that
there are nom51 hybrid electric modes. There will only b
m51 transverse electric modes withn.0 whenuS̄u.1 for
this mode or when them51 hybrid magnetic mode is cutoff
As we mentioned in Sec. III, forn50 the modes are purel
transverse. This means that the fundamental hybrid m
that is the mode with the lowest value ofu0, is the HM11
mode (u0'2.405), not theHE11 mode (u0'1.841), whose
transverse equivalentTE11 is the fundamental mode. The
disappearance of what should be the fundamental hy
mode means that we do not have an approximate gen
solution to Maxwell’s equations: we cannot represent an
bitrary radial profile inside the guide with the hybrid mod
that actually exist. We only have a complete solution wh
the m51 transverse electric modes exist.

V. NUMERICAL EXAMPLES

We will now give an example of the numerical results f
n51.5, ka520, andn51. This corresponds to an evacuat
glass waveguide with a rather small radius, but it allows
to demonstrate all of the important transitions in a handfu
modes. We chosen51 as this corresponds to typical las
pulses. For this refractive index we have considered va
of ka from 1.8 to 100 and values ofn from 0 to 5. All of
these results showed the same features we describe
Given that the refractive index of dielectrics varies fro
about 1.4 to around 2.1@9#, these results can be taken
representative of dielectric waveguides. We consider the
solute value ofD @Eq. ~4!# in the complexu plane (uR ,uI),
looking for the position of the minima. These are plotted
filled circles in Fig. 1. They were obtained using a grid sp
ing of 1023 in uR and 1024 in uI @12#. The grid lines inuR

give the values ofu1m8 , u0m , andu1m , which appear in that
order. However, the values ofu1m8 andu0m are so close for
m.2 that only the values ofu1m8 are actually shown. The
solid vertical lines give the positions of the expected tran
tions in the modes,uS̄u51 andun2uu05uug0u, which appear
in that order. The dotted curves give the imaginary com
nents of Eqs.~13!, ~15!, and~19!. The exact positions of the
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theoretically predicted modes are given by open circles,
beled with the mode name. TheHE11 mode clearly does no
appear in the numerical solution. The first point is
(2.389, 0.1740), coinciding almost exactly with the theor
ical prediction for theHM11 mode of (2.399, 0.1738). Ne
glecting S̄ in Eq. ~15! would giveuR52.405, showing that
this solution is an improvement over the results of Marca
and Schmeltzer@10# and Croset al. @11#, if only marginally
so for this mode. The next point is at (5.155, 0.4184), c
responding to theHE12 mode (5.208, 0.3906), the approx
mation is not as good this time, the main error being
underestimate ofuI , which is the case for all of the electri
modes. The adjacent point (5.403, 0.3766) is clearly
HM12 mode (5.441, 0.3895), again the theoretical mo
gives good agreement. Marcatili and Schmeltzer and C
et al. give just one point in this region at (5.520, 0.3895
For the subsequent modes these models breakdown c
pletely. Foru0.6.089 we haveuS̄u.1, and we can clearly
see the separation of the modes into transverse electric
transverse magnetic, though we only switch models for
magnetic modes. The theoretical prediction for theHE13
mode is (8.536, 0.3953), close to that for theTE13 mode
(8.536, 0.3616), and closer to the numerical result
(8.522, 0.4012). We still label the mode as transverse e
tric because the transverse magnetic component of the fi
is small. For the subsequent transverse electric modes,TE14,
TE15, and TE16, both equations give essentially the sam
results: (11.71, 0.4802), (14.86, 0.5627), a
(18.02, 0.6333), close to the numerical points
(11.69, 0.5120), (14.84, 0.6277), and (17.99, 0.7391). T
main error is the underestimate ofuI , which increases with
u0. This is to be expected, as the theory assumesu0!uug0u
andu0 /uug0u increases withu0. However, for the last, propa
gating, transverse electric modeTE16, u0 /ug050.6274 and
the result foruI is still within 15% of the numerical value
The first transverse mode is at (8.290, 0.9664), correspo
ing to the predictedTM138 mode (8.536, 0.8136), theHM13

mode would be at (8.538, 0.7802). The theoretical mode

FIG. 1. Mode structure for then51 modes in a cylindrical
waveguide withn51.5 andka520.
4-4
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not accurate here as it assumesun2uu0!uug0u and we have
n2u0 /ug050.8025, but it is more accurate than might
expected. For larger values ofka the theoretical model did
give accurate predictions for the first fewTMnm8 modes. In
this case there are no furtherTM1m8 modes. The value ofuR

of the TMnm8 modes and theTEnm modes is slightly overes
timated. There is a negative, second order, contribution
DuR , the leading term of which isDuI

2/u0 @8#. The differ-
ence is thus greater for theTMnm8 modes and they have lowe
values ofuR than theTEnm modes. The extension of th
theory to second order, though possible, is beyond the sc
of this paper. Foru0.11.09 we haveun2uu0.uug0u, so we
expect the next transverse magnetic mode to be theTM14

mode. As expected, theTM13 and TM148 modes do not ap-
pear, but there is a point at (10.94, 1.376), almost exactly
the transition line, which is not predicted by the theory. It
clearly a magnetic mode, but it does not fit into the predic
series of hybrid and transverse modes, so we christen it
M mode. To find an approximate solution for thisM mode
we use the large argument approximation forJn8(u)/Jn(u) in
Eq. ~6! as well as forHn8(ug)/Hn(ug). AssuminguuIu@1 we
haveJn8(u)/Jn(u)'2 i giving n2u'ug . This correctly pre-
dicts the value ofuR , but does not give the value ofuI . It
only correctly determines the value ofuI for large, complex
refractive indices. We were unable to obtain a simple, a
lytic result for theM mode with a wider regime of validity
The points at (13.55, 1.208), (16.54, 0.9564), a
(19.64, 0.8140) are clearly theTM14, TM15, and TM16
modes, which, according to Eq.~13!, have u equal to
(13.32, 0.8683), (16.47, 0.7494), and (19.62, 0.6740). T
time the values ofuR are slightly underestimated, the seco
order contribution toDuR is positive for theTMnm modes,
and the values ofuI are significantly underestimated. Th
approximation improves with increasingu0 as it assumes
un2uu0@uug0u, which is never satisfied: the last, propagatin
transverse magnetic modeTM16 has n2u0 /ug051.484.
Clearly the values ofuI for the magnetic modes in the vicin
ity of un2uu05uug0u cannot be obtained from a theory th
assumesuDuu!1. Despite this, the theory correctly predic
the rise and fall inuI and the position of the peak value, an
is at least within a factor of 1.4 of the numerical values. T
value ofuR is accurately predicted for all of the modes.

It is interesting to see how smallka has to be in order to
have a TE11 mode. The conditionuS̄u.1 requires ka
,0.94, and in this case we do not expect to have any pro
gating modes. Requiring theHM11 mode to be cutoff gives
ka,2.4. Numerical solutions showed obviouslyTE11 modes
up toka52.5, where we obtained (1.841, 0.8110) compa
to the theoretical prediction@Eq. ~11!# of (1.841, 0.7803).
For this case the hybrid electric result@Eq. ~19!# is clearly
not a better approximation. For theHM11 mode to exist we
requireun2uu0,uug0u, giving ka.4.34. Numerical solutions
only clearly corresponded to theHM11 mode atka511,
where we obtained (2.351, 0.3120) compared to the theo
ical prediction of (2.387, 0.3118). For intermediate values
ka there still existed a solution: aska increaseduR and
ug0uI increased steadily, moving between the predictedTE11
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and HM11 results. This is theM mode, but the large argu
ment approximation is not valid in this case. This is sugg
tive as to what might occur to theTE11 mode when it cease
to exist. Consider a waveguide with a slowly increasing
dius that only allows theTE11 mode to enter. After a rela
tively small increase in the radius this mode ceases to e
A mode being cutoff or reflected by a slowly increasing r
dius is counter intuitive, it seems likely that it is distorted
it propagates, eventually coupling to theHM11 mode. More
generally speaking, it appears likely that them51 transverse
electric components and the lower-order transverse magn
components of an arbitrary electromagnetic wave, propa
ing in a waveguide that does not support these modes,
be distorted by the losses, eventually coupling to the hyb
modes.

Our previous model@8# givesuI in terms of a reflectivity
R that is a specified function of angle of incidence and p
larization. Ignoring the complications of obtaining an ave
aged angle of incidence and polarization, it givesuI5
2 ln(R)/4, the angle of incidencef is given by sinf
5uR /ka, the transverse electric modes ares polarized and
the transverse magnetic modes arep polarized. The values o
uI given by this expression, using the full Fresnel equatio
@8#, are shown as dashed lines in Fig. 1, thep-polarized
reflectivity giving the higher value. The values ofuI for the
transverse modes are accurately reproduced. The value
the hybrid modes lie between thes- andp-polarized results.
Only the values ofuI for the TM138 and TM14 modes are
slightly overestimated at 1.051 and 1.284, respectively, co
pared to the actual values of 0.9664 and 1.208. However,
value ofuI for the M mode, which coincides almost exact
with the peak inuI , is considerably overestimated at 2.59
compared to the actual value of 1.376. This model, thou
more accurate than that described here for the transv
modes, still breaks down for the magnetic modes in the
cinity of n2u5ug , or in terms of the reflectivity near the
minimum in the p-polarized reflectivity. Including thef c
term @8#, which takes account of the varying angle of inc
dence and polarization, gave even better agreement with
transverse electric results and made no significant differe
to the transverse magnetic results.

Finally, we briefly consider a complex refractive indexn
53.5324.1i , again forka520 andn51. The results are
given in Fig. 2, in exactly the same format as the previo
results. This refractive index is the upper limit for aluminu
at a wavelength of 1mm that we considered in our previou
paper@8#. We have not extensively investigated complex
fractive indices, so we do not know if these results are ty
cal. In this case the refractive index is almost sufficient
obtain the loss-less mode structure. There are noTM1m8
modes and only one hybrid mode, theHM11 mode. This
mode occurs nearun2uu05uug0u, and we see the breakdow
of the hybrid magnetic solution. The theoretical predicti
for the HM11 mode is (2.676, 0.3381), and the numeric
result is (2.687, 0.4371). The value ofuR is accurately pre-
dicted, butuI is significantly underestimated. The next poi
~indicated by an arrow! is off the top of the figure at
(2.814, 2.048), this is theM mode. Using the large argumen
4-5
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solution,n2u'ug , gives (2.465, 2.786). The relatively larg
error is not surprising, considering thatJn8(u)/Jn(u) at the
numerically determined point is20.1202,20.8793i , not
2 i as is assumed. The next point is at (5.274, 0.04720)
uS̄u.1 we identify this as theTE12 mode, but we use the
HE12 prediction@Eq. ~19!# of (5.273, 0.04835), which give
much better agreement than theTE12 prediction@Eq. ~11!# of
(5.292, 0.03263). Equation~19! also gives marginally bette
agreement for theTE13 mode. For the subsequent transve
electric modes Eqs.~11! and ~19! give almost identical re-
sults, but Eq.~11! did give marginally better agreement th
time. For this higher-refractive index the approximationsu0
!uug0u andun2uu0@uug0u are more accurate and the theor
ical results are in good agreement with almost all of
numerical results. Only theTM12 prediction is slightly out at
(6.620, 0.3505) compared to the numerical result
(6.578, 0.3666). The value ofun2uu0 /uug0u for this mode is
only 1.489, so the agreement is better than would be
pected. It is interesting to note that the values ofuI for this
mode and for theHM11 mode are accurately determined b
using the predicted value ofuR in place ofu0 to calculate
uI . This clearly indicates that a second-order treatm
would accurately predict the results, but it is not sufficient
indicate if substitutinguR for u0 would, in general, give
better predictions foruI . The values ofuR are more accu-
rately predicted than in dielectrics as there is now a fi
order contribution toDuR .

We also examined this case using the reflectivity mod
This time it was necessary to include thef c term to give
accurate results for the transverse electric modes. The re
are very close to the numerical results for the transve
modes and very similar to those of the current model, ho
ever, in this case they are not more accurate. In the conte
the reflectivity model, the fact that the hybrid solution@Eq.
~19!# gives better agreement with the numerical results t
the transverse solution@Eq. ~11!# is due to the inherent mixed
polarization of then.0 transverse electric modes. The r
flectivity model again fails in the vicinity ofun2uu05uug0u,

FIG. 2. Mode structure for then51 modes in a cylindrical
waveguide withn53.5324.1i andka520.
04660
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this time underestimatinguI . For theHM11 mode even the
p-polarized reflectivity gives a value ofuI lower than the
numerical value 0.3857 compared to 0.4371, for theM mode
it is much lower at 0.3933 compared to 2.048, and for
TM12 mode the result is still somewhat low at 0.3284 co
pared to 0.3666. This leads to an interesting conclusion:
p-polarized reflectivity of a curved surface is lower than th
of a plane surface in metals and plasmas and higher in
electrics.

From these examples we can conclude that the theore
model is adequate for the vast majority of modes, and tha
is more accurate for larger, complex refractive indices. T
theory only proves inadequate in calculating the losses (uI)
for the magnetic modes in the vicinity ofun2uu05uug0u. The
examples show an additional magnetic mode, theM mode, in
this region. Assuming thatuuIu@1 we obtainedn2u'ug for
this mode, which has been seen to be of limited validity.

VI. CONCLUSIONS

We have established two parameters that determine
mode structure in cylindrical waveguides,uS̄u @Eq. ~17!# and
un2uu0 /uug0u. The value of these parameters increases w
the refractive index and the mode order, and exceeds 1 in
waveguides, at least for the higher-order modes. ForuS̄u,1
we have hybrid electric,HEnm , and hybrid magnetic modes
HMnm . For uS̄u.1 we have transverse electric,TEnm , and
transverse magnetic modes,TMnm , as in the loss-less case
For n50, uS̄u goes to infinity and the modes are identica
transverse. Forun2uu0 /uug0u,1 the transverse magneti
modes have significantly lower values ofu0 than in the loss-
less case, equal to those of the corresponding transverse
tric modes. We introduced the notationTMnm8 to distinguish
these modes. Forun2uu0 /uug0u.1 the mode structure is th
same as in the loss-less case. The three different regime
the magnetic modes required three different, approxim
solutions@Eqs.~12!, ~13!, and~15!#. None of these solutions
are accurate in the vicinity ofun2uu0 /uug0u51, where they
underestimate the losses. Numerical solutions showed an
ditional magnetic mode near this transition, which we cal
the M mode. We obtained an approximate solution for th
mode,n2u'ug , assuminguuIu@1, which is of limited va-
lidity. We obtained approximate solutions for the transve
electric @Eq. ~11!# and hybrid electric modes@Eqs. ~19! and
~20!#, which have been found to be adequate for all case
interest. For then.0 electric modes the hybrid solution ac
curately describes all except them51 modes. There are no
m51 hybrid electric modes. The transverse solution is
quired to describe them51 transverse electric modes an
then50 modes. The changes to the loss-less mode struc
mean that we do not have a complete set of orthogo
modes, and hence that we do not have a general solutio
Maxwell’s equations.

This work forms a bridge between previous hybrid so
tions @10,11# and loss calculations based on the loss-l
modes@8,9#, which are seen to be different limits of th
problem.
4-6
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Finally, we consider the implications for our previou
model @8#. It is valid for modes withun2uu0.uug0u, or in
terms of the reflectivity, when thep-polarized reflectivity in-
creases with increasing incidence angle. However, tak
into account the change inu0 of the transverse magneti
modes whenun2uu0,uug0u, it can be applied ton50 modes
andn.0 modes withuS̄u.1, which are less restrictive con
ditions. However, it is not valid for transverse magne
modes nearun2uu05uug0u, that is, near the minimum in th
p-polarized reflectivity. This can be associated to signific
changes in thep-polarized reflectivity for curved surfaces
the model treats the guide wall, point by point, as a pla
surface. The validity of the model forn50 anduuu@n can
be explained by the fact that in these cases the guide wall
be treated as a plane surface. Forn50 this is because the
fields are identical at every point around the wall. Foruuu
.

.

r-
G

04660
g

t

e

an

@n the large argument approximation for the Bessel fu
tions is valid and in this limit the fields at the wall have th
same form as a plane wave. The validity of the model
high-refractive indices can be explained by the negligi
penetration of the fields in the guide wall@9#. We have seen
that it is more accurate for the transverse modes in dielec
than the model given here and that it gives similar results
metals and plasmas. This indicates that it could be applie
plasma waveguides where the assumptions used here d
apply, but the reflectivity is known from other theoretical
experimental results.

ACKNOWLEDGMENT

J.R.D. was supported by a grant from the Fundac¸ão para a
Ciência e a Tecnologia.
nd

e

D.

c.,
@1# M. Borghesi, A.J. Mackinnon, R. Gaillard, O. Willi, and A.A
Offenberger, Phys. Rev. E57, R4899~1998!.

@2# M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett.68,
2793 ~1996!.

@3# C.G. Durfee III, A.R. Rundquist, S. Backus, C. Herne, M.M
Murnane, and H.C. Kapteyn, Phys. Rev. Lett.83, 2187~1999!.

@4# F. Dorchies, J.R. Marque`s, B. Cros, G. Matthieussent, C. Cou
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